Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
J Matern Fetal Neonatal Med ; 37(1): 2297158, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38220225

RESUMEN

OBJECTIVE: Preeclampsia, one of the most serious obstetric complications, is a heterogenous disorder resulting from different pathologic processes. However, placental oxidative stress and an anti-angiogenic state play a crucial role. Mitochondria are a major source of cellular reactive oxygen species. Abnormalities in mitochondrial structures, proteins, and functions have been observed in the placentae of patients with preeclampsia, thus mitochondrial dysfunction has been implicated in the mechanism of the disease. Mitochondrial nuclear retrograde regulator 1 (MNRR1) is a newly characterized bi-organellar protein with pleiotropic functions. In the mitochondria, this protein regulates cytochrome c oxidase activity and reactive oxygen species production, whereas in the nucleus, it regulates the transcription of a number of genes including response to tissue hypoxia and inflammatory signals. Since MNRR1 expression changes in response to hypoxia and to an inflammatory signal, MNRR1 could be a part of mitochondrial dysfunction and involved in the pathologic process of preeclampsia. This study aimed to determine whether the plasma MNRR1 concentration of women with preeclampsia differed from that of normal pregnant women. METHODS: This retrospective case-control study included 97 women with preeclampsia, stratified by gestational age at delivery into early (<34 weeks, n = 40) and late (≥34 weeks, n = 57) preeclampsia and by the presence or absence of placental lesions consistent with maternal vascular malperfusion (MVM), the histologic counterpart of an anti-angiogenic state. Women with an uncomplicated pregnancy at various gestational ages who delivered at term served as controls (n = 80) and were further stratified into early (n = 25) and late (n = 55) controls according to gestational age at venipuncture. Maternal plasma MNRR1 concentrations were determined by an enzyme-linked immunosorbent assay. RESULTS: 1) Women with preeclampsia at the time of diagnosis (either early or late disease) had a significantly higher median (interquartile range, IQR) plasma MNRR1 concentration than the controls [early preeclampsia: 1632 (924-2926) pg/mL vs. 630 (448-4002) pg/mL, p = .026, and late preeclampsia: 1833 (1441-5534) pg/mL vs. 910 (526-6178) pg/mL, p = .021]. Among women with early preeclampsia, those with MVM lesions in the placenta had the highest median (IQR) plasma MNRR1 concentration among the three groups [with MVM: 2066 (1070-3188) pg/mL vs. without MVM: 888 (812-1781) pg/mL, p = .03; and with MVM vs. control: 630 (448-4002) pg/mL, p = .04]. There was no significant difference in the median plasma MNRR1 concentration between women with early preeclampsia without MVM lesions and those with an uncomplicated pregnancy (p = .3). By contrast, women with late preeclampsia, regardless of MVM lesions, had a significantly higher median (IQR) plasma MNRR1 concentration than women in the control group [with MVM: 1609 (1392-3135) pg/mL vs. control: 910 (526-6178), p = .045; and without MVM: 2023 (1578-8936) pg/mL vs. control, p = .01]. CONCLUSIONS: MNRR1, a mitochondrial regulator protein, is elevated in the maternal plasma of women with preeclampsia (both early and late) at the time of diagnosis. These findings may reflect some degree of mitochondrial dysfunction, intravascular inflammation, or other unknown pathologic processes that characterize this obstetrical syndrome.


Asunto(s)
Enfermedades Mitocondriales , Preeclampsia , Femenino , Humanos , Embarazo , Estudios de Casos y Controles , Hipoxia , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales , Placenta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estudios Retrospectivos
2.
Viruses ; 15(12)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38140621

RESUMEN

Mitochondria have been identified as the "powerhouse" of the cell, generating the cellular energy, ATP, for almost seven decades. Research over time has uncovered a multifaceted role of the mitochondrion in processes such as cellular stress signaling, generating precursor molecules, immune response, and apoptosis to name a few. Dysfunctional mitochondria resulting from a departure in homeostasis results in cellular degeneration. Viruses hijack host cell machinery to facilitate their own replication in the absence of a bonafide replication machinery. Replication being an energy intensive process necessitates regulation of the host cell oxidative phosphorylation occurring at the electron transport chain in the mitochondria to generate energy. Mitochondria, therefore, can be an attractive therapeutic target by limiting energy for viral replication. In this review we focus on the physiology of oxidative phosphorylation and on the limited studies highlighting the regulatory effects viruses induce on the electron transport chain.


Asunto(s)
Fosforilación Oxidativa , Virosis , Humanos , Mitocondrias/metabolismo , Apoptosis/fisiología , Transducción de Señal , Virosis/metabolismo , Fosforilación , Estrés Oxidativo
3.
Placenta ; 140: 66-71, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37544161

RESUMEN

Intra-amniotic inflammation leading to preterm birth is one of the leading causes of neonatal morbidity and mortality. We recently reported that the mitochondrial levels of MNRR1 (Mitochondrial Nuclear Retrograde, Regulator 1; also called CHCHD2, AAG10, or PARK22), an important bi-organellar regulator of cellular function, are reduced in the context of inflammation and that genetic and pharmacological increases in MNRR1 levels can counter the inflammatory profile. Herein, we show that nitazoxanide, a clinically approved drug, is an activator of MNRR1 and abrogates preterm birth in a well-characterized murine model caused by intra-amniotic lipopolysaccharide (LPS) injection.


Asunto(s)
Corioamnionitis , Nacimiento Prematuro , Recién Nacido , Femenino , Humanos , Animales , Ratones , Nacimiento Prematuro/prevención & control , Lipopolisacáridos , Nitrocompuestos/efectos adversos , Inflamación/inducido químicamente , Líquido Amniótico , Proteínas de Unión al ADN , Factores de Transcripción/genética
4.
J Matern Fetal Neonatal Med ; 36(2): 2222333, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37349086

RESUMEN

OBJECTIVE: Mitochondrial dysfunction was observed in acute systemic inflammatory conditions such as sepsis and might be involved in sepsis-induced multi-organ failure. Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing 2 (CHCHD2), also known as Mitochondrial Nuclear Retrograde Regulator 1 (MNRR1), a bi-organellar protein located in the mitochondria and the nucleus, is implicated in cell respiration, survival, and response to tissue hypoxia. Recently, the reduction of the cellular CHCHD2/MNRR1 protein, as part of mitochondrial dysfunction, has been shown to play a role in the amplification of inflammatory cytokines in a murine model of lipopolysaccharide-induced systemic inflammation. The aim of this study was to determine whether the plasma concentration of CHCHD2/MNRR1 changed during human normal pregnancy, spontaneous labor at term, and clinical chorioamnionitis at term. METHODS: We conducted a cross-sectional study that included the following groups: 1) non-pregnant women (n = 17); 2) normal pregnant women at various gestational ages from the first trimester until term (n = 110); 3) women at term with spontaneous labor (n = 50); and 4) women with clinical chorioamnionitis at term in labor (n = 25). Plasma concentrations of CHCHD2/MNRR1 were assessed by an enzyme-linked immunosorbent assay. RESULTS: 1) Pregnant women at term in labor with clinical chorioamnionitis had a significantly higher plasma CHCHD2/MNRR1 concentration than those in labor without chorioamnionitis (p = .003); 2) CHCHD2/MNRR1 is present in the plasma of healthy non-pregnant and normal pregnant women without significant differences in its plasma concentrations between the two groups; 3) there was no correlation between maternal plasma CHCHD2/MNRR1 concentration and gestational age at venipuncture; and 4) plasma CHCHD2/MNRR1 concentration was not significantly different in women at term in spontaneous labor compared to those not in labor. CONCLUSIONS: CHCHD2/MNRR1 is physiologically present in the plasma of healthy non-pregnant and normal pregnant women, and its concentration does not change with gestational age and parturition at term. However, plasma CHCHD2/MNRR1 is elevated in women at term with clinical chorioamnionitis. CHCHD2/MNRR1, a novel bi-organellar protein located in the mitochondria and the nucleus, is released into maternal plasma during systemic inflammation.


Asunto(s)
Corioamnionitis , Trabajo de Parto , Embarazo , Femenino , Humanos , Animales , Ratones , Corioamnionitis/metabolismo , Proteínas Mitocondriales , Estudios Transversales , Trabajo de Parto/metabolismo , Inflamación , Líquido Amniótico/metabolismo , Proteínas de Unión al ADN/análisis , Factores de Transcripción/análisis , Factores de Transcripción/metabolismo
5.
J Matern Fetal Neonatal Med ; 36(1): 2183088, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36941246

RESUMEN

OBJECTIVE: Intra-amniotic inflammation (IAI), associated with either microbe (infection) or danger signals (sterile), plays a major role in the pathophysiology of preterm labor and delivery. Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing 2 (CHCHD2) [also known as Mitochondrial Nuclear Retrograde Regulator 1 (MNRR1)], a mitochondrial protein involved in oxidative phosphorylation and cell survival, is capable of sensing tissue hypoxia and inflammatory signaling. The ability to maintain an appropriate energy balance at the cellular level while adapting to environmental stress is essential for the survival of an organism. Mitochondrial dysfunction has been observed in acute systemic inflammatory conditions, such as sepsis, and is proposed to be involved in sepsis-induced multi-organ failure. The purpose of this study was to determine the amniotic fluid concentrations of CHCHD2/MNRR1 in pregnant women, women at term in labor, and those in preterm labor (PTL) with and without IAI. METHODS: This cross-sectional study comprised patients allocated to the following groups: (1) mid-trimester (n = 16); (2) term in labor (n = 37); (3) term not in labor (n = 22); (4) PTL without IAI who delivered at term (n = 25); (5) PTL without IAI who delivered preterm (n = 47); and (6) PTL with IAI who delivered preterm (n = 53). Diagnosis of IAI (amniotic fluid interleukin-6 concentration ≥2.6 ng/mL) included cases associated with microbial invasion of the amniotic cavity and those of sterile nature (absence of detectable bacteria, using culture and molecular microbiology techniques). Amniotic fluid and maternal plasma CHCHD2/MNRR1 concentrations were determined with a validated and sensitive immunoassay. RESULTS: (1) CHCHD2/MNRR1 was detectable in all amniotic fluid samples and women at term without labor had a higher amniotic fluid CHCHD2/MNRR1 concentration than those in the mid-trimester (p = 0.003); (2) the amniotic fluid concentration of CHCHD2/MNRR1 in women at term in labor was higher than that in women at term without labor (p = 0.01); (3) women with PTL and IAI had a higher amniotic fluid CHCHD2/MNRR1 concentration than those without IAI, either with preterm (p < 0.001) or term delivery (p = 0.01); (4) women with microbial-associated IAI had a higher amniotic fluid CHCHD2/MNRR1 concentration than those with sterile IAI (p < 0.001); (5) among women with PTL and IAI, the amniotic fluid concentration of CHCHD2/MNRR1 correlated with that of interleukin-6 (Spearman's Rho = 0.7; p < 0.001); and (6) no correlation was observed between amniotic fluid and maternal plasma CHCHD2/MNRR1 concentrations among women with PTL. CONCLUSION: CHCHD2/MNRR1 is a physiological constituent of human amniotic fluid in normal pregnancy, and the amniotic concentration of this mitochondrial protein increases during pregnancy, labor at term, and preterm labor with intra-amniotic infection. Hence, CHCHD2/MNRR1 may be released into the amniotic cavity by dysfunctional mitochondria during microbial-associated IAI.


Asunto(s)
Corioamnionitis , Rotura Prematura de Membranas Fetales , Trabajo de Parto Prematuro , Sepsis , Recién Nacido , Embarazo , Femenino , Humanos , Interleucina-6/análisis , Estudios Transversales , Proteínas Mitocondriales , Corioamnionitis/metabolismo , Trabajo de Parto Prematuro/metabolismo , Inflamación/metabolismo , Líquido Amniótico/metabolismo , Edad Gestacional , Rotura Prematura de Membranas Fetales/metabolismo , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/análisis , Factores de Transcripción/metabolismo
6.
Transl Oncol ; 29: 101623, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36641875

RESUMEN

Cancer progression requires the acquisition of mechanisms that support proliferative potential and metastatic capacity. MNRR1 (also CHCHD2, PARK22, AAG10) is a bi-organellar protein that in the mitochondria can bind to Bcl-xL to enhance its anti-apoptotic function, or to respiratory chain complex IV (COX IV) to increase mitochondrial respiration. In the nucleus, it can act as a transcription factor and promote the expression of genes involved in mitochondrial biogenesis, migration, and cellular stress response. Given that MNRR1 can regulate both apoptosis and mitochondrial respiration, as well as migration, we hypothesize that it can modulate metastatic spread. Using ovarian cancer models, we show heterogeneous protein expression levels of MNRR1 across samples tested and cell-dependent control of its stability and binding partners. In addition to its anti-apoptotic and bioenergetic functions, MNRR1 is both necessary and sufficient for a focal adhesion and ECM repertoire that can support spheroid formation. Its ectopic expression is sufficient to induce the adhesive glycoprotein THBS4 and the type 1 collagen, COL1A1. Conversely, its deletion leads to significant downregulation of these genes. Furthermore, loss of MNRR1 leads to delay in tumor growth, curtailed carcinomatosis, and improved survival in a syngeneic ovarian cancer mouse model. These results suggest targeting MNRR1 may improve survival in ovarian cancer patients.

7.
iScience ; 25(11): 105342, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36339251

RESUMEN

Mitochondria play a key role in placental growth and development, and mitochondrial dysfunction is associated with inflammation in pregnancy pathologies. However, the mechanisms whereby placental mitochondria sense inflammatory signals are unknown. Mitochondrial nuclear retrograde regulator 1 (MNRR1) is a bi-organellar protein responsible for mitochondrial function, including optimal induction of cellular stress-responsive signaling pathways. Here, in a lipopolysaccharide-induced model of systemic placental inflammation, we show that MNRR1 levels are reduced both in mouse placental tissues in vivo and in human trophoblastic cell lines in vitro. MNRR1 reduction is associated with mitochondrial dysfunction, enhanced oxidative stress, and activation of pro-inflammatory signaling. Mechanistically, we uncover a non-conventional pathway independent of Toll-like receptor 4 (TLR4) that results in ATM kinase-dependent threonine phosphorylation that stabilizes mitochondrial protease YME1L1, which targets MNRR1. Enhancing MNRR1 levels abrogates the bioenergetic defect and induces an anti-inflammatory phenotype. We therefore propose MNRR1 as an anti-inflammatory therapeutic in placental inflammation.

8.
JCI Insight ; 7(16)2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35993366

RESUMEN

Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. One of every 4 preterm neonates is born to a mother with intra-amniotic inflammation driven by invading bacteria. However, the molecular mechanisms underlying this hostile immune response remain unclear. Here, we used a translationally relevant model of preterm birth in Nlrp3-deficient and -sufficient pregnant mice to identify what we believe is a previously unknown dual role for the NLRP3 pathway in the fetal and maternal signaling required for the premature onset of the labor cascade leading to fetal injury and neonatal death. Specifically, the NLRP3 sensor molecule and/or inflammasome is essential for triggering intra-amniotic and decidual inflammation, fetal membrane activation, uterine contractility, and cervical dilation. NLRP3 also regulates the functional status of neutrophils and macrophages in the uterus and decidua, without altering their influx, as well as maternal systemic inflammation. Finally, both embryo transfer experimentation and heterozygous mating systems provided mechanistic evidence showing that NLRP3 signaling in both the fetus and the mother is required for the premature activation of the labor cascade. These data provide insights into the mechanisms of fetal-maternal dialog in the syndrome of preterm labor and indicate that targeting the NLRP3 pathway could prevent adverse perinatal outcomes.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Trabajo de Parto Prematuro , Nacimiento Prematuro , Animales , Femenino , Feto/metabolismo , Humanos , Recién Nacido , Inflamación , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Trabajo de Parto Prematuro/genética , Trabajo de Parto Prematuro/metabolismo , Embarazo , Nacimiento Prematuro/etiología , Nacimiento Prematuro/genética , Nacimiento Prematuro/metabolismo
9.
Biochim Biophys Acta Bioenerg ; 1863(8): 148911, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35988811

RESUMEN

Acclimation to acute hypoxia through cardiorespiratory responses is mediated by specialized cells in the carotid body and pulmonary vasculature to optimize systemic arterial oxygenation and thus oxygen supply to the tissues. Acute oxygen sensing by these cells triggers hyperventilation and hypoxic pulmonary vasoconstriction which limits pulmonary blood flow through areas of low alveolar oxygen content. Oxygen sensing of acute hypoxia by specialized cells thus is a fundamental pre-requisite for aerobic life and maintains systemic oxygen supply. However, the primary oxygen sensing mechanism and the question of a common mechanism in different specialized oxygen sensing cells remains unresolved. Recent studies unraveled basic oxygen sensing mechanisms involving the mitochondrial cytochrome c oxidase subunit 4 isoform 2 that is essential for the hypoxia-induced release of mitochondrial reactive oxygen species and subsequent acute hypoxic responses in both, the carotid body and pulmonary vasculature. This review compares basic mitochondrial oxygen sensing mechanisms in the pulmonary vasculature and the carotid body.


Asunto(s)
Complejo IV de Transporte de Electrones , Oxígeno , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Hipoxia , Oxígeno/metabolismo , Isoformas de Proteínas , Especies Reactivas de Oxígeno/metabolismo
10.
J Appl Genet ; 63(3): 469-474, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35508755

RESUMEN

Niemann-Pick C disease frequently presents as severe cholestatic disease in infants. However, it progressively becomes less of a problem as children age. We have found that, in an appropriate mouse model, liver cholesterol levels, which are initially very high, decrease while mitochondrial function, initially quite compromised, increases with age. The key mitochondrial regulator, MNRR1, increases in parallel with the increase in mitochondrial function. These changes appear to explain the amelioration of the liver disease that occurs with time in this disorder.


Asunto(s)
Hígado , Enfermedad de Niemann-Pick Tipo C , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Enfermedad de Niemann-Pick Tipo C/genética
11.
J Clin Med ; 11(2)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35053996

RESUMEN

Adhesions frequently occur postoperatively, causing morbidity. In this noninterventional observational cohort study, we enrolled patients who presented for repeat abdominal surgery, after a history of previous abdominal myomectomy, from March 1998 to June 20210 at St. Vincent's Catholic Medical Centers. The primary outcome of this pilot study was to compare adhesion rates, extent, and severity in patients who were treated with intraperitoneal triamcinolone acetonide during the initial abdominal myomectomy (n = 31) with those who did not receive any antiadhesion interventions (n = 21), as documented on retrospective chart review. Adhesions were blindly scored using a standard scoring system. About 32% of patients were found to have adhesions in the triamcinolone group compared to 71% in the untreated group (p < 0.01). Compared to controls, adhesions were significantly less in number (0.71 vs. 2.09, p < 0.005), severity (0.54 vs. 1.38, p < 0.004), and extent (0.45 vs. 1.28, p < 0.003). To understand the molecular mechanisms, human fibroblasts were incubated in hypoxic conditions and treated with triamcinolone or vehicle. In vitro studies showed that triamcinolone directly prevents the surge of reactive oxygen species triggered by 2% hypoxia and prevents the increase in TGF-ß1 that leads to the irreversible conversion of fibroblasts to an adhesion phenotype. Triamcinolone prevents the increase in reactive oxygen species through alterations in mitochondrial function that are HIF-1α-independent. Controlling mitochondrial function may thus allow for adhesion-free surgery and reduced postoperative complications.

12.
Front Genet ; 13: 970619, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37082114

RESUMEN

Autoantibodies against mitochondrial-derived antigens play a key role in chronic tissue inflammation in autoimmune disorders and cancers. Here, we identify autoreactive nuclear genomic DNA (nDNA)-encoded mitochondrial gene products (GAPDH, PKM2, GSTP1, SPATA5, MFF, TSPOAP1, PHB2, COA4, and HAGH) recognized by breast cancer (BC) patients' sera as nonself, supporting a direct relationship of mitochondrial autoimmunity to breast carcinogenesis. Autoreactivity of multiple nDNA-encoded mitochondrial gene products was mapped to protein-coding regions, 3' untranslated regions (UTRs), as well as introns. In addition, autoantibodies in BC sera targeted intergenic sequences that may be parts of long non-coding RNA (lncRNA) genes, including LINC02381 and other putative lncRNA neighbors of the protein-coding genes ERCC4, CXCL13, SOX3, PCDH1, EDDM3B, and GRB2. Increasing evidence indicates that lncRNAs play a key role in carcinogenesis. Consistent with this, our findings suggest that lncRNAs, as well as mRNAs of nDNA-encoded mitochondrial genes, mechanistically contribute to BC progression. This work supports a new paradigm of breast carcinogenesis based on a globally dysfunctional genome with altered function of multiple mitochondrial and non-mitochondrial oncogenic pathways caused by the effects of autoreactivity-induced dysregulation of multiple genes and their products. This autoimmunity-based model of carcinogenesis will open novel avenues for BC treatment.

13.
Mitochondrion ; 60: 228-233, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34481964

RESUMEN

In memoriam of Bernhard Kadenbach: Although the main focus of his research was the structure, function, and regulation of mitochondrial cytochrome c oxidase (CytOx), he earlier studied the mitochondrial phosphate carrier and found an essential role of cardiolipin. Later, he discovered tissue-specific and developmental-specific protein isoforms of CytOx. Defective activity of CytOx is found with increasing age in human muscle and neuronal cells resulting in mitochondrial diseases. Kadenbach proposed a theory on the cause of oxidative stress, aging, and associated diseases stating that allosteric feedback inhibition of CytOx at high mitochondrial ATP/ADP ratios is essential for healthy living while stress-induced reversible dephosphorylation of CytOx results in the formation of excessive reactive oxygen species that trigger degenerative diseases. This article summarizes the main discoveries of Kadenbach related to mammalian CytOx and discusses their implications for human disease.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Mitocondrias/metabolismo , Consumo de Oxígeno/fisiología , Animales , Complejo IV de Transporte de Electrones/genética , Isoenzimas , Mitocondrias/genética
14.
Placenta ; 106: 40-48, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33618181

RESUMEN

INTRODUCTION: Lysophosphatidylcholine Acyltransferase 1 (LPCAT1) is necessary for surfactant production in fetal lungs. Mechanisms responsible for its regulation during gestation remain to be elucidated. Our goal is to evaluate molecular mechanisms regulating LPCAT1 expression during gestation and after glucocorticoid administration. METHODS: Placentas throughout gestation were assayed for LPCAT1 protein levels. A placental cell line, HTR-8/SVneo (HTR), was used as a model to test the effects of placental oxygen tension found during pregnancy as well as the effects of dexamethasone used therapeutically in the clinic. RESULTS: LPCAT1 protein levels are maximal in late third trimester placental samples and are expressed strongly on the basal plate. LPCAT1 was maximally upregulated at 4% O2 (P < 0.01), corresponding to oxygen tension found in placenta at term. Mitochondrial nuclear retrograde regulator 1 (MNRR1), a bi-organellar (mitochondria and nucleus) regulator, transcriptionally activates LPCAT1. Antenatal corticosteroids (ACS) upregulate LPCAT1, at least in part, by an MNRR1-dependent pathway. HTR cells treated with 25 nM dexamethasone for 24 h exhibited a 2-fold increase in LPCAT1 levels compared to controls. In MNRR1 knockout cells, the response to ACS is significantly blunted. DISCUSSION: LPCAT1 appears to be induced by MNRR1. Hypoxia and corticosteroids increase LPCAT1 expression through an MNRR1 dependent pathway. LPCAT1 protein levels can be measured in maternal plasma and rise throughout gestation and in response to ACS.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Regulación de la Expresión Génica , Mitocondrias/metabolismo , Placenta/metabolismo , Tercer Trimestre del Embarazo/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , Línea Celular , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Humanos , Mitocondrias/genética , Embarazo , Tercer Trimestre del Embarazo/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Cells ; 10(2)2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498264

RESUMEN

Oxidative phosphorylation is a tightly regulated process in mammals that takes place in and across the inner mitochondrial membrane and consists of the electron transport chain and ATP synthase. Complex IV, or cytochrome c oxidase (COX), is the terminal enzyme of the electron transport chain, responsible for accepting electrons from cytochrome c, pumping protons to contribute to the gradient utilized by ATP synthase to produce ATP, and reducing oxygen to water. As such, COX is tightly regulated through numerous mechanisms including protein-protein interactions. The twin CX9C family of proteins has recently been shown to be involved in COX regulation by assisting with complex assembly, biogenesis, and activity. The twin CX9C motif allows for the import of these proteins into the intermembrane space of the mitochondria using the redox import machinery of Mia40/CHCHD4. Studies have shown that knockdown of the proteins discussed in this review results in decreased or completely deficient aerobic respiration in experimental models ranging from yeast to human cells, as the proteins are conserved across species. This article highlights and discusses the importance of COX regulation by twin CX9C proteins in the mitochondria via COX assembly and control of its activity through protein-protein interactions, which is further modulated by cell signaling pathways. Interestingly, select members of the CX9C protein family, including MNRR1 and CHCHD10, show a novel feature in that they not only localize to the mitochondria but also to the nucleus, where they mediate oxygen- and stress-induced transcriptional regulation, opening a new view of mitochondrial-nuclear crosstalk and its involvement in human disease.


Asunto(s)
Enfermedad , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Humanos , Filogenia , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
16.
Proc Natl Acad Sci U S A ; 117(50): 32056-32065, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257573

RESUMEN

MNRR1 (CHCHD2) is a bi-organellar regulator of mitochondrial function that directly activates cytochrome c oxidase in the mitochondria and functions in the nucleus as a transcriptional activator for hundreds of genes. Since MNRR1 depletion contains features of a mitochondrial disease phenotype, we evaluated the effects of forced expression of MNRR1 on the mitochondrial disease MELAS (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes) syndrome. MELAS is a multisystem encephalomyopathy disorder that can result from a heteroplasmic mutation in the mitochondrial DNA (mtDNA; m.3243A > G) at heteroplasmy levels of ∼50 to 90%. Since cybrid cell lines with 73% m.3243A > G heteroplasmy (DW7) display a significant reduction in MNRR1 levels compared to the wild type (0% heteroplasmy) (CL9), we evaluated the effects of MNRR1 levels on mitochondrial functioning. Overexpression of MNRR1 in DW7 cells induces the mitochondrial unfolded protein response (UPRmt), autophagy, and mitochondrial biogenesis, thereby rescuing the mitochondrial phenotype. It does so primarily as a transcription activator, revealing this function to be a potential therapeutic target. The role of MNRR1 in stimulating UPRmt, which is blunted in MELAS cells, was surprising and further investigation uncovered that under conditions of stress the import of MNRR1 into the mitochondria was blocked, allowing the protein to accumulate in the nucleus to enhance its transcription function. In the mammalian system, ATF5, has been identified as a mediator of UPRmt MNRR1 knockout cells display an ∼40% reduction in the protein levels of ATF5, suggesting that MNRR1 plays an important role upstream of this known mediator of UPRmt.


Asunto(s)
Núcleo Celular/metabolismo , ADN Mitocondrial/genética , Proteínas de Unión al ADN/metabolismo , Síndrome MELAS/patología , Mitocondrias/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción Activadores/metabolismo , Autofagia/genética , Fraccionamiento Celular , Respiración de la Célula/genética , Proteínas de Unión al ADN/genética , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Síndrome MELAS/genética , Mitocondrias/genética , Mutación , Oxígeno/metabolismo , Factores de Transcripción/genética , Respuesta de Proteína Desplegada/genética
17.
Int J Biochem Cell Biol ; 121: 105704, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32023432

RESUMEN

Cytochrome c (Cytc)1is a cellular life and death decision molecule that regulates cellular energy supply and apoptosis through tissue specific post-translational modifications. Cytc is an electron carrier in the mitochondrial electron transport chain (ETC) and thus central for aerobic energy production. Under conditions of cellular stress, Cytc release from the mitochondria is a committing step for apoptosis, leading to apoptosome formation, caspase activation, and cell death. Recently, Cytc was shown to be a target of cellular signaling pathways that regulate the functions of Cytc by tissue-specific phosphorylations. So far five phosphorylation sites of Cytc have been mapped and functionally characterized, Tyr97, Tyr48, Thr28, Ser47, and Thr58. All five phosphorylations partially inhibit respiration, which we propose results in optimal intermediate mitochondrial membrane potentials and low ROS production under normal conditions. Four of the phosphorylations result in inhibition of the apoptotic functions of Cytc, suggesting a cytoprotective role for phosphorylated Cytc. Interestingly, these phosphorylations are lost during stress conditions such as ischemia. This results in maximal ETC flux during reperfusion, mitochondrial membrane potential hyperpolarization, excessive ROS generation, and apoptosis. We here present a new model proposing that the electron transfer from Cytc to cytochrome c oxidase is the rate-limiting step of the ETC, which is regulated via post-translational modifications of Cytc. This regulation may be dysfunctional in disease conditions such as ischemia-reperfusion injury and neurodegenerative disorders through increased ROS, or cancer, where post-translational modifications on Cytc may provide a mechanism to evade apoptosis.


Asunto(s)
Citocromos c/metabolismo , Transporte de Electrón/genética , Apoptosis , Humanos , Fosforilación
18.
J Cancer Immunol (Wilmington) ; 2(4): 138-158, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33615312

RESUMEN

We review here the evidence for participation of mitochondrial autoimmunity in BC inception and progression and propose a new paradigm that may challenge the prevailing thinking in oncogenesis by suggesting that mitochondrial autoimmunity is a major contributor to breast carcinogenesis and probably to the inception and progression of other solid tumors. It has been shown that MNRR1 mediated mitochondrial-nuclear function promotes BC cell growth and migration and the development of metastasis and constitutes a proof of concept supporting the participation of mitochondrial autoimmunity in breast carcinogenesis. The resemblance of the autoantibody profile in BC detected by IFA with that in the rheumatic autoimmune diseases suggested that studies on the autoantibody response to tumor associated antigens and the characterization of the mtDNA- and nDNA-encoded antigens may provide functional data on breast carcinogenesis. We also review the studies supporting the view that a panel of autoreactive nDNA-encoded mitochondrial antigens in addition to MNRR1 may be involved in breast carcinogenesis. These include GAPDH, PKM2, GSTP1, SPATA5, MFF, ncRNA PINK1-AS/DDOST as probably contributing to BC progression and metastases and the evidence suggesting that DDX21 orchestrates a complex signaling network with participation of JUND and ATF3 driving chronic inflammation and breast tumorigenesis. We suggest that the widespread autoreactivity of mtDNA- and nDNA-encoded mitochondrial proteins found in BC sera may be the reflection of autoimmunity triggered by mitochondrial and non-mitochondrial tumor associated antigens involved in multiple tumorigenic pathways. Furthermore, we suggest that mitochondrial proteins may contribute to mitochondrial dysfunction in BC even if mitochondrial respiration is found to be within normal limits. However, although the studies show that mitochondrial autoimmunity is a major factor in breast cancer inception and progression, it is not the only factor since there is a multiplex autoantibody profile targeting centrosome and stem cell antigens as well as anti-idiotypic antibodies, revealing the complex signaling network involved in breast carcinogenesis. In summary, the studies reviewed here open new, unexpected therapeutic avenues for cancer prevention and treatment of patients with cancer derived from an entirely new perspective of breast carcinogenesis.

19.
Sci Signal ; 13(615)2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31848220

RESUMEN

Acute cardiorespiratory responses to O2 deficiency are essential for physiological homeostasis. The prototypical acute O2-sensing organ is the carotid body, which contains glomus cells expressing K+ channels whose inhibition by hypoxia leads to transmitter release and activation of nerve fibers terminating in the brainstem respiratory center. The mechanism by which changes in O2 tension modulate ion channels has remained elusive. Glomus cells express genes encoding HIF2α (Epas1) and atypical mitochondrial subunits at high levels, and mitochondrial NADH and reactive oxygen species (ROS) accumulation during hypoxia provides the signal that regulates ion channels. We report that inactivation of Epas1 in adult mice resulted in selective abolition of glomus cell responsiveness to acute hypoxia and the hypoxic ventilatory response. Epas1 deficiency led to the decreased expression of atypical mitochondrial subunits in the carotid body, and genetic deletion of Cox4i2 mimicked the defective hypoxic responses of Epas1-null mice. These findings provide a mechanistic explanation for the acute O2 regulation of breathing, reveal an unanticipated role of HIF2α, and link acute and chronic adaptive responses to hypoxia.


Asunto(s)
Arterias/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Quimiorreceptoras/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Animales , Arterias/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cuerpo Carotídeo/citología , Cuerpo Carotídeo/metabolismo , Complejo IV de Transporte de Electrones/genética , Hipoxia , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/metabolismo , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sistema Respiratorio/metabolismo , Transducción de Señal
20.
Mitochondrion ; 51: 15-21, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31862414

RESUMEN

It has long been known that there is decreased mitochondrial function in several tissues of Niemann-Pick C1 model mice and cultured cells. These defects contribute to the accumulation of Reactive Oxygen Species (ROS) and tissue damage. It is also well established that there is increased unesterified cholesterol, stored in late endosomes/lysosomes, in many tissues in mutant humans, mouse models, and mutant cultured cells. Using a mouse model with an NPC1 point mutation that is more typical of the most common form of the disease, and highly purified liver mitochondria, we find markedly decreased mitochondrial membrane cholesterol. This is compared to previous reports of increased mitochondrial membrane cholesterol. We also find that, although in wild-type or heterozygous mitochondria cytochrome c oxidase (COX) activity decreases with age as expected, surprisingly, COX activity in homozygous mutant mice improves with age. COX activity is less than half of wild-type amounts in young mutant mice but later reaches wild-type levels while total liver cholesterol is decreasing. Mutant mice also contain a decreased number of mitochondria that are morphologically abnormal. We suggest that the decreased mitochondrial membrane cholesterol is causative for the mitochondrial energy defects. In addition, we find that the mitochondrial stress regulator protein MNRR1 can stimulate NPC1 synthesis and is deficient in mutant mouse livers. Furthermore, the age curve of MNRR1 deficiency paralleled levels of total cholesterol. The role of such altered mitochondria in initiating the abnormal autophagy and neuroinflammation found in NPC1 mouse models is discussed.


Asunto(s)
Membrana Celular/metabolismo , Colesterol/análisis , Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitocondrias Hepáticas/metabolismo , Enfermedad de Niemann-Pick Tipo C/genética , Factores de Transcripción/metabolismo , Animales , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Hígado/metabolismo , Masculino , Ratones , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...